
 

Raskenlund Webinar Transcript 

How to Build an SRT Streaming Flow from Encoder 
to Edge 

 

 
 
Okay, we'll start this webinar. And I would like to welcome everyone. And thank you for making 
time to attend this webinar. And it's probably appropriate to say a special welcome to all the 
people who have tried to reach out to me in the past week as I may not have been as 
responsive as usual. Probably you have just tried to figure out what I've been up to. And in the 
next hour, I'll let you know.  
 
The subject for today's webinar is how to build an SRT streaming flow from encoder to edge. 
And before we dive into the subject, I would like to give some practical information. First of all, 
throughout the webinar you will be able to answer a few polls On the right side of your screen 
you can go to the poll section and there you will, at some point in the webinar, you will see that 
we have a few questions which you are free to answer and it will be very interesting and the 
results will be immediately shared anonymously so that you can see what your fellow 
participants have chosen.  
 



 

Another interesting thing is that for all people who participate in this webinar, we'll offer a free 
consultation. So if you go to the offer section on the right, you'll be able to click a button and fill 
out the form and we'll contact you as soon as possible.  
 

 
 
With that, let's start with a quick introduction. First a little bit about me, I started with streaming 
media in the late 90s. And around that time is probably Windows Media Server or Windows 
Media Services that was the standard. And we did some really interesting projects with real 
estate, with soccer, or football as we call it in Europe. And we even built a streaming media 
network over satellite, that was a really exciting time. And over time I grew more and more 
excited about streaming media and about its possibilities. And it even went this far that in 2012 
or no, in 2008, I decided to make it my full time job. And that's where I found the company 
Raskenlund. 
 
At Raskenlund, we are a team of experienced and excited people who really want to help you 
with your streaming media solutions. But our focus is that we want to make this technology work 
for your business. We don't want to throw a lot of software or hardware at you and put that 
together to a cool solution, but we want to make sure that whatever technology and software we 
choose really supports your business case. And therefore it's also that we very consciously 
have decided to be and stay an independent consultancy company, we just want to make sure 
that we can offer whatever is the best in class technology for your situation.  
 
 
 
 



 

 
 
Let's go on to the agenda for today then. First of all, I would like to give you an introduction 
about the SRT protocol, what it is, and what you can do with it. Then I will give you some 
comparison of SRT with some of the well-known protocols. After that we'll go over to a live 
demo where I will show you how you can configure a few devices and software to use SRT. And 
finally we'll wrap up and hopefully have some time for questions if any questions are coming in. 
 
If you have any questions, please use the chat window, and we'll try to pick a few of these 
questions in the end and answer them. If we don't have time for all the questions, we'll do our 
best to get back to you and give you an answer. At any time you may also drop us a message 
or contact us via the special offer and get some free consultations from us.  
 



 

 
 
So over to the history of SRT. So what is it? Why is it required? And when is it a good fit? So 
SRT was invented by Haivision back in 2012. And I would say SRT was actually born out of a 
clear need to replace the existing protocols. The protocols that were in the market at that time 
were coping or were trying really hard to keep up with the technology changes in the industry 
but clearly designed and defined for older methods and older technologies, and we'll see that as 
well when we're going to do comparisons between the protocols. So that's why Haivision, back 
in 2012, invented SRT and found this new way to transport streaming media over the internet.  
 
In 2017, SRT was made open source. And that really put SRT on the map and at the same 
time, the SRT alliance was formed by Haivision and Wowza, initially. By today there are more 
than 350 members of the SRT alliance and at Raskenlund we are very proud to be a member of 
the alliance as well. And what the alliance does is we're a community that has focused on 
further adoption and recognition of the protocol but also further development.  
 
The protocol itself is open source as I already said, which means that the source code is 
available on GitHub. If you're a developer, you can check the source code, you're free to 
contribute, and if you have some ideas or if you have developed something that may be 
interesting, then you can put it up for approval. At this moment in this webinar, I don't want to go 
too much in detail about exactly how the SRT protocol works under the hood, but if you're 
interested in that, I can recommend a webinar that was held just last week by Haivision as part 
of their SRT Tuesday series. The name of the webinar is broadcast reimagined SRT. And I'm 
sure you'll find that when you do some Googling on the internet.  
 



 

What I would like to tell you about SRT, it's mostly about its functionality and its features. And 
the most important features are already covered in the name, namely the S and the R. The S is 
for security, which is implemented by AES encryption. So that makes it pretty much possible to, 
pretty much impossible, sorry, to steal the data and make anything useful out of it. The reliability 
of the protocol is mostly because of the use of the ARQ protocol. The ARQ protocol stands for 
automatic repeat request. Which means that lost packets can be requested over again and then 
sent over again so that you can get a perfect row of packets without any loss on the receiver 
side.  
 
A third feature and interesting thing of the SRT protocol is that it's really low latency. Now, the 
use of ARQ, typically requires a buffer, that makes sense. The receiver side, of course, you 
must keep a small queue so that you can wedge the lost packets back in its place. And on the 
sender side, logically, you must keep a small buffer so that you can resend the packets that 
were lost along the way and that are requested by the receiver.  
 
A buffer and low latency typically sound a bit contradictory, and that's true. If you have a large 
buffer, logically, you can't do low latency. But in this case the buffer is rather small. Typically the 
recommended size of this buffer is one and half times the round trip time between sender and 
receiver. And if you think that the round trip time between two servers in Europe is typically less 
than 50 milliseconds, or the round trip time between Europe and US is typically less than 200 
milliseconds, then you can see why this is rightfully called a low latency protocol. Because we're 
always talking about sub-second latency. And that even counts for really long distances.  
 
In a recent test that Haivision did they sent a stream from Germany all the way to Sydney in 
Australia, they received a round trip time of approximately 360-400 milliseconds and that means 
that they set a buffer of about 600 milliseconds. And that is still well below the second. There 
are some other interesting features that have recently been added and that soon will be added 
to the SRT protocol. One of which is that multiplexing has been introduced in version 1.4. And 
that means that you can send multiple streams or multiple packets over the same port instead of 
having to open a separate port for every stream. And that may of course sound like music in the 
ears of the IT department because they will have less to do.  
Some things that will be introduced in the next version and you can find these in the 
experimental branch in the GitHub repository are for instance load balancing, connection 
bonding and seamless switching. And I think these are some very exciting features. I'm 
personally especially interested in the connection bonding to see how we can send a stream 
over multiple connections. So, if we have listed all these features, I think it could become clear 
why SRT is really such a great protocol.  
 
When is SRT interesting to be used? Well, mostly on the first mile site and on the backhaul site. 
And the first mile is between the fuel production and the broadcast facility. Or between your 
encoder and your origin server. And the backhaul is between your servers or between your data 
centers. This is really where the SRT excels.  
 



 

At this moment, SRT is not so much interesting for a last mile protocol, there are other protocols 
that we know very well there, like HLS, MPEG-DASH, most lately WebRTC has become really 
popular. SRT is not really a good fit yet there. It may be in the future, but for instance, because 
there is still very limited support for SRT in web browsers. It's not a good match to use SRT to 
the players. If you still wonder why SRT would be a good fit, then I would almost ask why would 
it not be a good fit? Especially if you look at the other protocols. These advantages that the 
protocols have and the advantages that SRT has. So let's take a look at these.  
 

 
 
We start with probably the most known and the most used protocol for encoder to server and 
server to server communication and until about five to 10 years ago, also probably the 
most-used protocol for a client playback when we still had Flash in our browsers. And that is 
RTMP. RTMP is by now just over 20 years old. It was prototyped by Macromedia which later 
was acquired by Adobe back in 1999. And one of the advantages is that because it's such an 
old protocol, it's also very mature, it's a very well established protocol and not at least it's widely 
supported. I think that pretty much every media server, every encoder can do RTMP. And that 
of course makes that it's a logical choice or at least it has been a logical choice for many years 
for a lot of streaming solutions. However, as I already told you in the start, the old protocols can't 
really keep up with the technology changes and one of these technology changes is the new 
video and audio codecs that are being launched. RTMP is really tightly connected to the video 
and audio format that you can use. So when newer formats are coming, you may not be able to 
use RTMP for that. And there have been some attempts and some implementations that make 
RTMP suitable for transmission of HEVC et cetera. But that's not a part of the standard. And for 
your transport protocol, you really want a protocol that is codec agnostic that can send anything 



 

over the line and that makes it future proof so when new video formats and audio formats are 
coming, you won't have to change your transport protocol.  
 
Another issue with RTMP is that it works quite well for server to server communications over 
shorter distances, but if you are trying to send a stream from Europe to Asia pacific, or try to 
send a stream from up in the north to down south, you will see that first of all, there is a huge 
latency, and secondly, the RTMP protocol, because of that it's built on TCP, and requires all 
these acknowledge packets, it will become so slow that eventually it may even fail. SRT does 
not have these problems. Because the use of UDP, because of the use of ARQ, it will perform 
just fine also over longer distances. And even keep this very low latency as I've talked about.  
 
So the next protocol that I would like to talk about is RTSP. RTSP is actually even older than 
RTMP. The first draft was submitted to IETF in 1996. And RTSP is mostly use in IP cameras, 
that's where we see a lot of RTSP. RTSP actually uses RTP to transfer the data. And one of the 
advantages of RTP is that you can run it both over TCP and UDP. However, that is also its 
disadvantage. Because if you want to use TCP over very long distances in real time, you'll have 
this problem of the acknowledge packets that must be sent back all the time, which makes the 
protocol slow. Whereas, if you want to use UDP, you'll have no control over where the bytes are 
going and if there is any packet loss and there is no packet recovery. So, you'll always have this 
trade off where you have to choose for either of them and neither of them is really a good 
solution.  
 
The third protocol or solution that I would like to compare is the MPEG-TS over UDP. And I 
would say probably MPEG-TS over UDP is the most straightforward solution that you can use 
for streaming. You can just let any solution put the bytes on the UDP port and send it to the 
receiver. However, the fact that it's so straightforward, also makes it so vulnerable. And because 
it's using UDP and as I tend to say, UDP is a protocol that doesn't care, it just throws the bytes 
out on the internet and it really doesn't care if somebody gets it. It really doesn't care about 
packet loss. And if there is any packet loss, there is no possibility to retrieve the packets. So, 
that makes MPEG-TS over UDP a really unreliable solution and not at least when you are using 
it over the internet. It may work well in your local network or in a controlled environment, but 
internet is of course a very unreliable and unpredictable infrastructure where you really should 
go for a more reliable protocol.  
 
As for HLS, MPEG-DASH, WebRTC and a whole lot of other protocols, I have bundled them 
together under the name last mile protocols. As I already mentioned, SRT is not really a last 
mile protocol, not yet at least, we don't know what the future will bring. But if you want to do last 
mile and you don't care about latency, then HLS and MPEG-DASH, HTTP-based protocols are 
really a good choice because it's so easy to transport and the possibility to cache.  
 
For low latency, as I mentioned, WebRTC has really become popular, and there are some other 
low latency implementations of course, actually in the demo we'll show Softvelum's SLDP 
protocol, and there are many companies who can offer you low latency solutions.  



 

 
Then over to RIST and RIST is really what you could call a new kid on the block. It's a younger 
protocol than SRT. And it's developed under the Video Service Forum Activity Group. 
Interestingly enough, the inventor of SRT, Haivision, is also a member of this video service 
forum. And is also actively involved in the development of RIST. So why invent a new protocol if 
you already have SRT? Well, this was mostly because the RIST protocol really is aiming 
towards becoming a standard. And already now the technical recommendation has been 
submitted and is up for review and the RIST protocol is based on standards from for instance, 
SMPTE and IETF. That can both be an advantage and a disadvantage. The advantage is that 
once it's approved as a standard, of course it will be a really safe choice for a lot of companies, 
especially maybe for those who want to build it in their hardware. However, since it takes time to 
approve the standard and since it takes time to approve the features, the development of RIST 
will most likely be much slower than the development of SRT. And we see for instance that 
RIST lacks some important features that SRT has for today. For instance, RIST can only push 
the stream out to the receiver. Whereas with SRT, you can either push the stream or you can 
pull the stream. Or as we call it in SRT, you can have a caller or a listener. And RIST does not 
support encryption yet. RIST does not support multiplexing, and RIST only supports RTP for 
data. And these are features that are currently lacking in RIST and I expect that they will come, 
but as I said, it will just take time before these features can be implemented. Whereas with SRT, 
first of all, many of these features already are implemented, and secondly, because of the SRT 
community, because of the SRT Alliance, and because of SRT being open source, it's possible 
to implement features and functionality much faster. Now that we have seen and heard a lot 
about the different protocols and about the different possibilities, let's move on to a live demo. 
 
 

 



 

 
 
What I would like to show in this demo is how you can build your flow from the encoder to or 
through the origin to an edge server and then eventually play it back on a few devices. So, first 
of all, we'll configure the server and make sure that they can listen for incoming SRT. And then 
we'll configure encoders to push a stream to the video server, and then we'll do a quick 
playback just to have proof that it actually works. And eventually I will also show you the high 
efficient SRT gateway and why it can be useful. So let me share my screen. And let's dive into 
the demo.  
 
Here I have a Windows media server that has been set up with a really default set up. In 
Windows Streaming Engine, if you want to use SRT, the first thing that you have to do is that 
you have to define the configuration. An SRT definition is created as a stream file. So what I can 
do here is I can add a new stream file. Give it a name. And provide the URI. In this case I want 
the SRT to listen on all interfaces. On port 10,002. I can set some of the properties. Of course, 
it's interesting to edit the encryption properties. Set a key length of 16 characters and then fill 
out a new key. And I can add some other properties. I can set this recovery buffer that we talked 
about. The default is 400 milliseconds, if your servers are rather close, then you can make that 
a lower number. If your servers are on a large geographic distance, you can increase that 
number. And when you go back to an overview of our stream files, we now have this configured 
and I can start that. And choose SRT as the MediaCaster type. Click okay. And when I go over 
to the incoming streams, you will see that there is right now an active stream with a status 
waiting for stream because there is currently no encoder that is sending the stream.  
 
So let's go ahead and do that. I'll right now take OBS studio which is a free product and 
surprisingly or interestingly supports SRT. So I'll go over to settings in my OBS studio. Stream. 



 

Write the name of my Wowza server. Port 10002. And at the passphrase as a parameter. Then I 
click okay. And I start streaming. After a second or two we will see the green button here which 
shows that the stream is on. And if I now go back to my Wowza server and click refresh, you will 
see that I have an active stream. For the sake of this test, I have actually enabled the Wowza 
transcoder. So that we can transcode the audio to Opus, which allows me to give a quick demo 
of playback with WebRTC. So here I have set up the WebRTC playback with Wowza. And I've 
reconfigured it already, the only thing I need to do is add the stream name with the Opus suffix 
to make sure that I get a transcoded output. When I click play I should get the stream in just a 
second.  
 
Of course I chose the wrong stream name, it's stream 2.stream. Let's try once more. There we 
go. So, without further specific optimization or tuning, you can see that the latency currently is 
approximately three seconds. And it's possible to get that further down, that's outside the scope 
of this webinar. But we can see that it's decent low latency. And again, of these three second 
latency, the SRT protocol itself only stands for 400 milliseconds. So I have not optimized my 
WebRTC in Wowza.  
 
Let's go back to the Wowza server and stop this stream for a second. Now I would like to show 
you the same thing just with some different software. Over here I have installed a Nimble 
streamer which also supports SRT. And when I go to the Nimble streamer live stream settings, I 
can choose MPACT TSN and add a SRT stream. And here I can choose the receive mode, 
either listen or pull or caller as we call it in SRT. Or rendezvous. Which means that whoever 
makes the first call will be the caller and the other one will be the listener. I'll set it to listen on all 
interfaces. And at the local port, 10003. I'll call this one stream three. And since I want to add an 
AES encryption to this as well, I'll add a custom parameter that is called passphrase and I will 
add the key there. As you see, as soon as I set the custom parameter passphrase, the key 
length is automatically added and set to a default of 16.  
 
I also want an output stream application live and I'll call this first stream three. It takes a few 
seconds for this stream to be synchronized with my Nimble stream server, because I am using 
Softvelum's online service, WMSPanel to configure my Nimble streamer. It's also possible to 
configure Nimble streamer directly in the console via the configuration files. But using 
WMSPanel is a really easy way and shows exactly the status of the stream. So it will take a few 
seconds 
 
In the meantime I'll go over to my iPad and just start an app there that I have installed. 
Unfortunately, I have not managed to find a way to mirror the screen of my iPad so I'll just tell 
you what's going on over here. I have installed an app that is called Larix. Larix is an app that is 
developed by Softvelum and you can use it to send a stream to a media server and it supports 
SRT. So let me just quickly show you here, may be a bit small characters but this is the settings 
of the configuration in Larix. I'll go over to my iPad and just verify the connection. One second 
please. Let's test. Okay, that shoots back to the Nimble server. And right now I'm streaming a 
live stream from my iPad with Larix.  



 

 
When I go to the overview of the live streams in Nimble, I see that the stream three that I've just 
configured has a green check mark, which means that it is online. I can check the outgoing 
stream and see that it has recognized the audio codec to video codec, et cetera. So, the next 
thing I have done is I have set up a test page with the SLDP protocol that is developed by 
Softvelum, which is a low latency protocol as well. When I play back we will see that this is live 
from my iPad with approximately two seconds of delay. I'll just make sure that I click play, there 
we go. So that is from my iPad over SRT to the Nimble server. And from there with SLDP to the 
player.  
 
Another possibility is to use Haivision's own hardware. And I've been so lucky that Haivision has 
let me borrow one of their Makito X encoders where I have configured the stream to be sent 
directly to the Wowza server. So as you can see here, I have set up the stream to use TS over 
SRT. I have set up this as a caller. The address of my Wowza server and the destination port. 
And when I switch back to my Wowza server, of course I have to make sure that I have this 
stream file started, so the name of the stream is in this case srt10001. I'll start this one, choose 
SRT. And immediately we can see that it is already active because the Makito encoder has 
been configured to send the stream to it.  
 
Now of course as I already told that SRT uses UDP which requires ports to be opened, 
multiplexing can be a nice solution if you have limited availability of ports that you can open in 
the firewall. But another possibility, because of SRT supports this listener and caller system, you 
can choose to put an SRT gateway in the middle. And I have installed an SRT gateway here 
and an SRT gateway allows you to listen for both the sender and receiver, and to route the 
streams to multiple destinations, one or multiple destinations. So as you can see here, in this 
gateway, I have set up a single encoder in this route and then two destinations. One of which is 
the Wowza server that we already know. And the other one is the player pro app, which is a free 
app that runs on iOS, available from Haivision. Which is a really great app to monitor your SRT 
streams.  
 
So, let me configure my Makito to send a stream to the Haivision gateway instead of to the 
Wowza server. And what I need is the address of the gateway. I'll go to the Makito and change 
that address and I'll stick with port 10001. And that's all. Now I'll go back to the Haivision 
gateway and it may take a few seconds before, and there we see, before the dock turns green 
is what I wanted to say, but it went even faster than I expected. And at this moment, I have the 
Makito X encoder who sends the stream to my gateway and then the output is both to the 
Wowza server and the player pro app. So when I go back to my Wowza server I should still 
have an active stream, which I indeed do have, except now it comes from the Makito gateway, 
and from the Haivision SRT gateway instead of directly from the Makito. That opens for a lot of 
possibilities especially if you want to send the stream to multiple destinations or if you have 
these firewall issues.  
 



 

 

 
One last thing that I want to mention that it's not possible to hold a demo of yet is the SRT hub. 
The SRT hub is, I would say with my words that it's an infrastructure as a service. It's powered 
by Microsoft Azure and uses their network and allows you to define your SRT connections in the 
SRT hub. And also allows you to process the stream in the hub. And I have received a few 
slides from Haivision about SRT hub that I'd like to share with you that really makes it clear what 
the SRT hub does.  
 



 

It's a possibility to define and design your workflows in a really easy GUI. And to connect your 
end points and to connect any media or streaming processing in between. And as you can see it 
has three kinds of hublets, as they call it. The input, the output and the processing. So you 
imagine that maybe you want to do some transcoding in between and you might have all kinds 
of input hardware or software, and you can connect that together in the hub, and the Azure 
infrastructure makes sure that your stream is transported safely and sound over the internet.  
 

 
 
And with that, I would like to see if there have come in any questions. There have indeed and I'll 
just have to pick a few random and as I said, we'll go through all the questions that have come 
in and we'll try to answer them one by one afterwards.  
 
So one questions from Tyler is what are my thoughts on the SRT Live transmit app that is 
available from the GitHub repository? And personally, I think it's a great tool. But mainly used to 
show how you can transmit data if it's SRT. The nice thing with that app is that it really doesn't 
care what type of data you send over the line, so you can use it for file transfer, or you can use it 
for streams, of course. But I would say that, I would personally not use it in a production 
environment because it's really meant to show the capabilities and possibilities of SRT and it 
needs some more work if you want to use it in production. I hope that answers your question. 
 
Let me see if I have a few other questions that I can answer. So there's a question, if the 
websites and services that I demoed here are available on a month to month subscription? Most 
of them are. Wowza is available as a month to month subscription. A Nimble server in itself 
actually is a free product from Softvelum. As is Larix, which you can download for free from the 
app store or from the Google Play store. However, the configuration from WMSPanel is a 



 

monthly subscription. And for any information about the Haivision products, I would like to refer 
you to Haivision, they are the ones who know best about that. However what I do know is that 
the Haivision SRT gateway is available for instance in Amazon Web Services in the marketplace 
where you can use it as a pay-as-you-go subscription. Which may be really interesting.  
 
A question from Patrice who asked if there is an existing open source streaming server 
implementing SRT? The one that I have been following lately is a media server called Oven 
Media Engine, which I think is a really important development. And that one does support SRT, 
but only partial, yeah, so you can't use all of the features from SRT. But I really find it an 
interesting development. Apart from that, I personally don't know any media servers that support 
open source media servers that support SRT. Right now I'm thinking that Ant Media Server may 
do it. But I'm sure that if you do some Googling, you'll find a lot of interesting projects.  
 
One last question that I'll handle and then the rest I'll answer later. The question from Thomas 
who says, "is it possible to reach the WebRTC low latency with SRT?" and yes it is. The fact 
that I showed you three seconds latency in my demo is simply because I have set it up relatively 
quickly and not spent a lot of time on trying to tune this really for the lowest possible latency, but 
WebRTC in itself is also a protocol that is capable of doing sub-second latency. And so it's a 
matter of tuning simply. Then I get a nice point or a nice comment from Mark who says that 
MistServer may support SRT, so that's also one that you can look into.  
 
Okay. With that I would like to remind you once more about the possibility to get some free 
consultancy and thank you for attending. Please allow me to mention Ruben from Geezer 
Agency, he is my marketing expert and has done a fantastic job in helping me. And I would like 
to thank Selwyn Jans from Haivision who has provided me with the Haivision equipment, and 
who has provided me with a lot of useful information. But most of all of course, I would like to 
thank everyone of you for attending. And if you have any questions, please feel free to keep 
chatting for a while, or send me an email at hello@raskenlund.com. 

mailto:hello@raskenlund.com

